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Abstract Carlo Rovelli’s inspiring “Relational Quantum Mechanics” serves several
aims at once: it provides a new vision of what the world of quantum mechanics is like,
and it offers a program to derive the theory’s formalism from a set of simple postu-
lates pertaining to information processing. I propose here to concentrate entirely on
the former, to explore the world of quantum mechanics as Rovelli depicts it. It is a
fascinating world in part because of Rovelli’s reliance on the information-theory ap-
proach to the foundations of quantum mechanics, and in part because its presentation
involves taking sides on a fundamental divide within philosophy itself.
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Rovelli’s inspiring “Relational Quantum Mechanics” provides an original vision of
what the world of quantum mechanics is like.1 It is fascinating in part because its
presentation involves taking sides on a fundamental divide within philosophy itself.

1Rovelli [11]; I will refer by section numbers, since a revised version is available on the web.
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1 Placing Rovelli

1.1 Rovelli’s Description of Rovelli’s World

In Rovelli’s world there are no observer-independent states, nor observer-independent
values of physical quantities. A system has one state relative to a given observer, and
a different state relative to another observer. An observable has one value relative to
one observer, and a different value relative to another observer. (The relativity of val-
ues of observables follows from the relativity of states in this view, because Rovelli
emphatically retains the ‘eigenstate-eigenvalue link’: observable A has value x pre-
cisely if the system to which A pertains is in an eigenstate of A. However, this must
be read so as to accommodate ‘vague’ ascriptions of values, since the states of a sys-
tem relative to various observers are generally mixed rather than pure.) ‘Observer’
does not have connotations of humanity or consciousness here—each system pro-
vides its own frame of reference relative to which states and values can be assigned.
The analogy being drawn on continues a convention adopted at the birth of the theory
of relativity, where observers were equated to moving spatial frames of reference.

We want to ask at once: what are the absolutes, the invariants, the features that
do characterize these systems, in ways that are not relative to something else? That
remains crucial to the understanding of this view of the quantum world. Following
Rovelli’s own convenient fiction of observers who measure and assign states to the
objects they measure, we can think of those observers as having assimilated Rovelli’s
view, and thus having available some of his observer-independent description of what
is going on. In assigning a state to a measured object, which includes information
about probabilities of outcomes of possible future measurements, the observer draws
on stable observer-independent features (notably, the algebra of observables and the
‘transition probabilities’ provided by quantum mechanics).

1.2 History of Quantum Theory Interpretation

We can relate Rovelli’s approach to a fundamental division among interpretations of
quantum mechanics that was outlined by John Wheeler. When Everett published his
seminal paper in 1957, Wheeler added a commentary acknowledging that throughout
the history of Quantum Mechanics so far, there had been two views in tension with
each other, and he argued that Everett had finally made the ‘one true story of the
universe’ version feasible:

(1) The conceptual scheme of “relative state” quantum mechanics is completely
different from the conceptual scheme of the conventional “external observa-
tion” form of quantum mechanics and (2) The conclusions from the new treat-
ment correspond completely in familiar cases to the conclusions from the usual
analysis. The rest of this note seeks to stress this correspondence in conclusions
but also this complete difference in concept. [16, p. 463]

Wheeler is here contrasting Everett’s conception with the older ‘external observation’
conception, that he describes as follows:
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The “external observation” formulation of quantum mechanics has the great
merit that it is dualistic. It associates a state function with the system under
study—as for example a particle—but not with the ultimate observing equip-
ment. The system under study can be enlarged to include the original object
as a subsystem and also a piece of observing equipment—such as a Geiger
counter—as another subsystem. At the same time the number of variables in
the state function has to be enlarged accordingly. However, the ultimate observ-
ing equipment still lies outside the system that is treated by a wave equation.
(1957, ibid.)

Rovelli clearly places himself in the older ‘external observation’ formulation, oppo-
site to the new one that Wheeler lauds. But there is one very important difference that
places Rovelli somewhat nearer Everett’s. Rovelli takes seriously the idea that any
and every system can play the role of ‘ultimate observing equipment’:

By using the word “observer” I do not make any reference to conscious, an-
imate, or computing, or in any other manner special, system. I use the word
“observer” in the sense in which it is conventionally used in Galilean relativity
when we say that an object has a velocity “with respect to a certain observer”.
The observer can be any physical object having a definite state of motion. For
instance, I say that my hand moves at a velocity v with respect to the lamp
on my table. Velocity is a relational notion (in Galilean as well as in special
relativistic physics), and thus it is always (explicitly or implicitly) referred to
something; it is traditional to denote this something as the observer, but it is
important in the following discussion to keep in mind that the observer can be
a table lamp. (end sect. I.)

Thus Rovelli insists that all systems “are assumed to be equivalent, there is no
observer–observed distinction”. In saying this he does not take back his rejection of
the notion of observer-independent states or observer-independent values of physical
quantities. Instead, he means that just as in his guiding example of relativity theory,
every physical object can be taken as defining a frame of reference to which all val-
ues of physical quantities are referred. Related to this objectification of the ‘external
observer’ is his conception of information in physics:

Also, I use information theory in its information-theory meaning (Shannon):
information is a measure of the number of states in which a system can be—or
in which several systems whose states are physically constrained (correlated)
can be. Thus, a pen on my table has information because it points in this or that
direction. We do not need a human being, a cat, or a computer, to make use of
this notion of information. (ibid.)

Rovelli takes it that any system can in principle have information about any other,
due to a previous interaction, for he equates the having of information in its physical
sense with a correlation that has been effected by such an interaction:

any physical system may contain information about another physical system.
For instance if we have two spin-1/2 particles that have the same value of the
spin in the same direction, we say that one has information about the other one.
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Thus observer system in this paper is any possible physical system (with more
than one state). If there is any hope of understanding how a system may behave
as observer without renouncing the postulate that all systems are equivalent,
then the same kind of processes—“collapse”—that happens between an elec-
tron and a CERN machine, may also happen between an electron and another
electron. Observers are not “physically special systems” in any sense.

We must treat this with some delicacy, since the usual explanation of such correlations
or entanglements is in terms of states conceived of as observer-independent. The
standard quantum mechanical formalism is used here, but understood in a new way.

Given the comparative loss of popularity of the older ‘external observation’ ap-
proach, at least among those who work on foundations of physics, Rovelli’s return to
it at this date imparts his view with a stimulating sense of novelty.

1.3 Information-Theory Approach from Groenewold to the Present

Noting the emphasis Rovelli puts on information, it is also important to place Rov-
elli’s approach with respect to the information-theory approach. This is a very lively
new development. While there were beginnings and precedents, this has recently
taken a quite radical turn, and Rovelli’s work can be seen as involved in that turn.
Let’s look at the beginnings first and then at the radical agenda in such recent work
as that of Christopher Fuchs, Jeffrey Bub and their collaborators.

In the 1950s H.J. Groenewold advocated that we should regard quantum states
as just summaries of information obtained through measurement. There are some
striking similarities between Groenewold’s description of the quantum mechanical
situation and Rovelli’s.

Groenewold [6, 7] proposed a formulation of the theory that would contain all
its empirical content without referring to states in any essential way. He derided the
idea that quantum states are to be thought of on the model of states in classical me-
chanics. His formulation re-appears quite clearly in Rovelli’s article, though there in
a more general form. The idea is that a situation of interest is to be depicted as the
effect of a series of measurements, represented by a series of observables (the ones
being measured) interspersed with evolution operators (governing evolution between
measurements). The sole real problem to be addressed, according to Groenewold, is
this:

given the outcomes of preceding measurements, what are the probabilities for
outcomes of later measurements in the series?

The answer is formulated in terms of transition probabilities.2 In the exposition of
Rovelli’s specific version below I shall explain and illustrate how that goes.

Groenewold offers an argument to the effect that states are to be regarded as ‘sub-
jective’ or ‘observer-relative’, determined by information available. Imagine that each
measurement apparatus in the series records its outcome.3 After the entire series has

2Groenewold was not the only one; see for example [13].
3See Dicke [3] for an argument about how this is physically possible without disturbance; see further the
discussion in [15, pp. 257–258].
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been concluded, a physicist O inspects those recorded results in some order, and
assigns states to the system measured for the times of those outcomes using von Neu-
mann’s Projection Postulate recipe (which everyone agrees is fine for such narrowly
focused predictive tasks). To begin, O assumes some initial state. Groenewold sug-
gests that in absence of other information that could be the entirely uninformative
mixture represented by the identity operator on the space. For time t between times
t1 and t2 where the state ρ(t1) is assumed or known the calculation looks like this:

ρ(t) = U(t, t2)K(t2)ρ(t1)K(t2)U(t2, t)

(with a correspondingly longer such series for a longer series of measurements be-
tween the initial and final time) where the Ks are transition operators, and the time-
indexed ρ is the ascribed state; the U s are the normal evolutions while no measure-
ment or other interference occurs.

But now what would happen if O (or one of his colleagues) decides on a dif-
ferent order for inspection of the recorded outcomes? For the same times, although
having started with the same initial knowledge or assumptions about the system, the
assignment of states will be quite different.

There is nothing contentious in this imagined scenario itself. The contentious part
is Groenewold’s insistence that no other significance is to be accorded to the as-
signment of states. They are nothing more than compendia of information assumed,
known, or gathered through measurements, and thus determined entirely by a specific
history, the ‘observer’s’ history. The truly empirically testable part of the theory, he
insists, is contained in the transition probabilities. When they are tested, the conve-
nient calculation starts with an assignment of an initial state, but coherence requires
only that some such initial assignment leads to the right predictions—the transition
probabilities are independent of the states, they are formulable in terms of the observ-
ables.4

This insistence, that the states be thought of as playing no other role, is at the
heart of the recent innovations in the information theoretic approach. Christopher
Fuchs presents the program in its most radical form in his much discussed “Quantum
Mechanics as Quantum Information (and only a little more)”:

This, I see as the line of attack we should pursue with relentless consistency:
The quantum system represents something real and independent of us; the
quantum state represents a collection of subjective degrees of belief about
something to do with that system (even if only in connection with our ex-
perimental kicks to it). The structure called quantum mechanics is about the
interplay of these two things—the subjective and the objective [5, p. 5].)

He submits that “the quantum state is solely an expression of subjective information—
the information one has about a quantum system. It has no objective reality in and

4They are often presented as probabilities for transitions between states, because the Projection Postulate
is generally taken for granted. In [15] I explained them in an intermediate way: the probability is that of the
outcome 1 of a measurement of the observable represented by projection on the vector representing second
state, given that the system measured is in the first state. But this can easily be replaced by a formulation in
terms of the two observables, which are the projections on the two states. For a nice introductory treatment
of the theory entirely in this form we can look to [13].
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of itself.” When asked “information about what?” he replies “The answer is ‘the po-
tential consequences of our experimental interventions into nature’.” (ibid, p. 7) But
Fuchs also has a precise proposal about how to describe the information-updating
process in response to measurement. (See further [4].) Drawing on results, both his
own and others, he depicts it as a special case of Bayesian updating of opinion by
conditionalization. We have to think here, as in Groenewold’s scenario, of an epis-
temic agent with a pertinent prior state of opinion—a physicist who accepts at least
the bare minimum of the quantum theory—reacting to recorded measurement out-
comes. There is also, without explicit attention paid, for both Groenewold and Fuchs,
a presumed coordination, so that tangible physical operations can be univocally rep-
resented in terms of an algebra of observables of a certain sort.

This reliance on a fundamental representation of the physical situation—the
coordination—becomes clearest in the important paper by Robert Clifton, Jeffrey
Bub, and Hans Halvorson. The physical system is characterized by means of an alge-
bra of observables, taken to be a C* algebra.5 But states are just generalized probabil-
ity functions—more accurately, expectation value functions—defined on this algebra
of observables. So far that is similar to the approach in more “realistically” under-
stood foundational treatments. The difference comes in what is added now so as to
single out quantum theories. What is added is constraints on information transfer,
with the states thought of as information depositories. From the premise that those
constraints are satisfied, the basic principles of quantum theory are deduced. As re-
flection on this result, Bub then argued in his “Why the Quantum?” that

A quantum theory is best understood as a theory about the possibilities and im-
possibilities of information transfer, as opposed to a theory about the mechanics
of non-classical waves or particles. [1, p. 42]

“Information” is here understood as Groenewold specified, in the technical sense of
information theory, as measured classically by the Shannon entropy or by the von
Neumann entropy for quantum states. And in “Quantum Mechanics Is About Quan-
tum Information”, Bub argues that

Quantum mechanics represents the discovery that there are new sorts of infor-
mation sources and communication channels in nature (represented by quantum
states), and the theory is about the properties of these information sources and
communication channels. You can, if you like, tell a mechanical story about
quantum phenomena . . . but such a story, if constrained by the information-
theoretic principles, will have no excess empirical content over quantum me-
chanics. So the mechanical story for quantum phenomena is like an aether story
for electromagnetic fields. [2, p. 558]

Bub’s answer to the question “Information about what?” is just the same as Fuch’s—
though in phrasing that shows his special interest in encryption and decoding.

Note once again that some form of coordination is presumed given, without re-
ceiving explicit attention: the measurements and their results are assumed univocally

5This is a very general framework, which allows for the formulation of many sorts of physical theories,
both classical and quantum.
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representable in terms of the observables that characterize the system. This points to
‘absolute’ characteristics of the system, which are not aspects of information gath-
ered about it, but pertain to the system itself. That the system is characterizable in
such a way is presupposed when certain operations are classified as, or taken to be,
means of gathering information about it. Thus here, as for Groenewold (and equally
for Rovelli, as we shall see) there is a divide as well as a link between ‘subjective’
and ‘objective’ features of the experimental situation.

2 Is There a View from Nowhere?

At first sight Rovelli’s treatment of states is not exactly what either Groenewold,
Fuchs, or Bub appears to advocate.6 Rovelli does bring states into the discussion, but
as states that measured objects can have relative to the measuring system. At first
sight we seem to detect a tension between what Rovelli does and what he tells us it is
possible to do. What he calls his Main Observation, motivating the view, is similar to
Groenewold’s though:

In quantum mechanics different observers may give different accounts of the
same sequence of events.

Having rejected the idea of observer-independent states, there is no question of one
of those descriptions being the sole truth, with the other illusion or error. Here is an
example that Rovelli describes in intuitive terms. I will elaborate on it, in several
steps.

Example 1 The two-observer situation
To begin we can characterize it as follows.
There are two observers, O and P , and one other system, S. Observer O measures

an observable A on system S, while the second observer P describes this measure-
ment by O on S. (Later on P may make a measurement on S too, or on S + O; but
we will leave this unexplored for now.)

O registers the value 1, say, and thus assigns pure state |A,1〉 to S, or in other words,
S is now in state |A,1〉 relative to O .

6Though Rovelli’s article was clearly inspirational to the later literature; cf. Fuchs, op. cit. p. 3.
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Meanwhile P has the information that this measurement is taking place (presum-
ably on the basis of earlier measurements made on S + O). So P describes O as in
an initial state |init〉 and S +O coupled at the beginning. The state of S +O evolves:

(α|A,1〉 + β|A,0〉) ⊗ |init〉 → (α|A,1〉 ⊗ |B,1〉) + (β|A,0〉 ⊗ |B,0〉).
Here |B,1〉 and |B,0〉 are the ‘pointer reading states’ that P uses to characterize
observer O when O registers a definite value of 1 or 0 as measurement outcome.
That is, the measurement interaction between S and O is such as to effect the requisite
correlation between A pertaining to S and B pertaining to O .

If P now wonders what state to assign to S, but does not make a measurement, then
he calculates it by the usual ‘reduction of the density matrix’. Thus P assigns to S a
mixed state, namely the mixture of |A,1〉 and |A,0〉 in proportions α2 and β2. So we
see that O and P assign different states to S. To put it in other words, S has different
states relative to O and relative to P .

Rovelli also insists on the orthodox eigenvalue-eigenstate link, so that A takes a
value 1 relative to O , but not relative to P —observables have values only relative to
observers, and may not have the same value relative to different observers.

But is this description of the situation then observer-independent, one that is in
fact not relative to any observer? Shouldn’t we object that the rationale forbids this,
because by Rovelli’s lights we can only have descriptions relative to some observer
or other?

2.1 General form Versus Third-Observer Description

The answer is that there is no incoherence here, but we must carefully distinguish
what Rovelli gives us when he presents his view, even in such an example, and the
description of the same situation by a third observer. The Example can indeed be
elaborated so as to include a third observer, whom we might call ROV. We could
imagine that ROV has, on the basis of previous measurements, information that can be
summarized by assignments of initial states to O , S, P and their composites relative
to ROV, plus later states based on their unitary evolution. We’ll look later at how this
goes, when we will also have occasion to consider measurements that P can make
on O or S later on. But right now we can point out that ROV’s information is not to
be confused with what Rovelli tells us about this sort of situation. The tension that a
reader might feel could be expressed this way:

Rovelli seemingly purports to be giving us a description of the world that would
on the one hand be on the same level as a description of the rest of the world
relative to some given system ROV, and yet on the other hand not relative to
anything!

But that is not so at all. Rovelli, who can give these examples, is telling us only some-
thing about the general form that these observers’ descriptions (their information) can
take, given that certain measurement interactions have taken place. The resolution of
this sensed tension is this: Rovelli does not give any specific such description of the
world—he describes the form that any description which assigns states must take.
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Rovelli describes not the world, but the general form of information that one system
can have about another—namely as the assignment of states relative to a given system
on the basis of information available to that system:

• there is no implication of possible specific information about what there is which
is independent of any point of view, but

• there can be knowledge of the form that any such information, relative to a partic-
ular vantage point, must take.

So we have here a transcendental point of view. Rovelli offers us this knowledge of
the general form, the conditions of possibility. We must take very seriously the fact
that as he sees it, quantum mechanics is not a theory about physical states, but about
(‘about’?) information. The principles he sees at the basis of quantum mechanics are
principles constraining the general form that such information can take, not to be
assimilated to classical evolution-of-physical-state laws.

2.2 The form of an Observer’s Description of the World

This form is constrained by the insistence that specific information, had by one sys-
tem about another system, can only be a record of actual measurement outcomes.
The only way in which there can be information for one observer of what has hap-
pened to another observer is through a physical measurement by the former on the
latter. Communication, i.e. exchange of information, is physical (cf. end sect. III of
the article).

Before aiming at greater precision, let’s briefly summarize how this happens ac-
cording to Rovelli’s account. A question is asked of a system or source only when
an appropriate physical interaction takes place. This interaction is a measurement de-
livering a value for some observable, but also serves as a preparation, so that the
value obtained has (relative to the theory) predictive content. The probabilities of
future measurement outcomes are affected by the outcome obtained—the measured
system has gone into a new state relative to the measurement set-up. Thus he accepts
(explicitly, in his rejection of the Bohm and modal interpretations) von Neumann’s
eigenstate-eigenvalue link:

the system to which the observable’s value pertains is (at that time) in an eigen-
state of that observable, corresponding to that value.

But there is a twist, which changes the meaning, so that this says something quite
different from its original. The reference is here not to a physical state of the system,
but to the state of the system relative to the observer (the measurement apparatus). So
the ‘collapse’ is in that observer’s information; the state assigned to the system is a
summary of that information.

As mentioned earlier, because of the eigenstate-eigenvalue link it follows that if
states are relative, so are values of observables. That an observable takes or has a
certain value at a certain moment, that too is observable-relative (cf. end of sect. 2
[10]). Because information can only be had by actual, physical measurement, the
states assigned will rarely be pure. It is not easy to obtain maximal information about
a system, even with respect to targeted observables. So in general the value of an
observable, relative to a given observer, will not be sharp.
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This information is the subject of two postulates. Let us introduce them in such
a way as to spell out what is and is not observer relative. Each physical system S

is characterized in the first place by means of a set W(S) = {Qi : i in I } of ques-
tions that can be asked of it. This association of W(S) with S is not relative to any
observer—we may call it the first ‘absolute’. Although the presentation differs, this
set of questions pertaining to S is essentially the specification of the family of observ-
ables that pertain to S. (Eventually, the algebra of observables is reconstructed from
this family of questions; for our purposes we need not distinguish the two.) When the
sets of questions are the same for two systems we may call them of the same type.

Secondly, an observer who has been in measurement interaction with a system
has a record of the questions that have been asked and the sequence of outcomes
thus obtained. That the observer has this is not relative to another observer.7 It is our
second ‘absolute’. At the same time we must be careful not to equate this fact about
the observer with a quantum mechanical state! For while we could try to describe a
state that ostensibly is the state that O has if and only if it has a particular sequence of
0s and 1s registered in a series of measurement interactions with S, that would have
to be the state of O relative to another observer P who has obtained that information
by means of a later measurement on S. We’ll see later on whether, or to what extent,
there could be a discrepancy, or even a meaningful comparison.

3 States as Observer-Information

3.1 The Postulates Constraining Information Acquisition

Postulate 1 (Limited information) There is a maximum amount of relevant in-
formation that can be extracted from a system.

Answers to questions have predictive value, but typically, earlier answers become
irrelevant to the predictions after later answers, and must do so. “Irrelevant” and
“redundant” are perhaps not entirely apt terms: if a state is to be assigned on the basis
of the extracted information, earlier answers must typically have to be discarded from
the basis on which states are assigned.

For system S there is a definite probability that given question Q will get
a yes-answer if asked; this probability can differ for another system of type
W(S); moreover, this probability is affected by the answers to previous ques-
tions asked.

The ‘moreover’ establishes that the probabilities in question are transition probabil-
ities. This I will spell out further after the second postulate. Note that what these
transition probabilities are is the same regardless of which observer O asks the ques-
tions of S. So we have here a third ‘absolute’. But fourthly, if we look at how
the probability of future measurement outcomes changes in the course of asking

7By taking this not to be relative, we have in this sequence of 0s and 1s something analogous to Einstein’s
local coincidences, the ‘bed rock’ of the representation. Rovelli’s criticism of the ‘consistent histories’
interpretation suggest strongly that he does not allow any ambiguity in this respect.
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c = 〈Q1,Q2,Q3, . . . , 〉 and getting number sequence sc = [n1, n2, n3, . . .]c the items
that become irrelevant after a certain point are also the same for all systems of the
same type (the fourth ‘absolute’). So, given these notions, we can define:

maximally non-redundant question-answer sequence: one in which no element
is irrelevant, but which loses that feature if any question + answer at all is
added.8

Postulate 1 says that this sequence is finite. In a particular case, we can ask for the rel-
evant finite number: how many questions are needed to extract maximal information,
leading to the assignment of a pure state relative to the observer? This number does
not depend on which sequence of questions we pick, and hence also is not relative.
Thus Rovelli writes, in a passage immediately following Postulate 1:

One may say that any system S has a maximal “information capacity” N , where
N , an amount of information, is expressed in bits. This means that N bits of
information exhaust everything we can say about S. Thus, each system is char-
acterized by a number N . In terms of traditional notions, we can view N as the
smallest integer such that N ≥ log 2k, where k is the dimension of the Hilbert
space of the system S. Recall that the outcomes of the measurement of a com-
plete set of commuting observables, characterizes the state, and in a system de-
scribed by a k = 2N dimensional Hilbert space such measurements distinguish
one outcome out of 2N alternatives (the number of orthogonal basis vectors):
this means that one gains information N on the system.

The number in question therefore depends on the dimension of the state space—if that
dimension is finite number k then N is log2 k or just above (to make N an integer); the
dimension is 2N , or (2N) − 1. We have a good link here with information theory: the
missing information, about what this ‘source’ of type W(S) is like, is extractable in
at most N Yes–No questions: the maximal information capacity of a system (source)
of this type is N bits. 9 But now Rovelli adds:

Postulate 2 (Unlimited information) It is always possible to acquire new infor-
mation about a system.

This is not at odds with the first postulate, given that new information can make older
information ‘irrelevant’ (having to be discarded). But it is certainly at odds with the
classical ideal of perfectible measurement, as revelation of aspects of the state of the
system before measurement, without affecting that state. It entails a certain degree
of indeterminism: the maximum possible information at a point does not settle what
new information we could get. That is in part because observables can be (totally)
incompatible: they may have no joint eigen-state:

given a Yes answer to question Q there are many questions Q′ such that if they
are then asked, their answer cannot be Yes with certainty, nor No with certainty.

8Rovelli introduces and uses the term “complete family sc of information” for “maximally non-redundant
question-answer sequence”.
9Compare: “In particular, I identify one element of quantum mechanics that I would not label a subjective
term in the theory; it is the integer parameter D traditionally ascribed to a quantum system via its Hilbert-
space dimension.” Chris Fuchs [5], Abstract.
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Notice the modal character of this assertion! In contrast, some questions Q and Q′
are compatible: on a given occasion, after receiving Yes to Q, the observer has only
non-zero probabilities for both possible answers to Q′, but if he then asks Q′, he can
base more precise predictions on the fact that he has had these two answers.

New assumption: this indeterminism is not a chaotic randomness, but can be
characterized in terms of definite probabilities.

Suppose the first complex apparatus A asks a “complete” question, so it yields a
record that provides a maximally non-redundant question-answer sequence. Before
that question has been asked we have no non-trivial information. Suppose the second
apparatus B is equally complete, though the question family is very different. Rovelli
posits a definite transition probability p(B|A) that a Yes answer to B will follow a
Yes answer to A, which is both idempotent and symmetric.

Intuitive mnemonics: look at the scenario in which a single source sends many
systems of the same type into the series of measurement apparatus for two-valued
observables A,B, . . . that the observer has installed. The stream is diminished by
some factor q by the first measurement, then by the transition probability p. Suppose
we do A again, then once again the stream is diminished by that factor p. So the
number goes from qM to pqM to ppqM by the operations A,AB,ABA so we could
write:

ABA = pA

and this is what a sequence of 1-dimensional projections would do to a vector. It is a
way to identify the transition probability. This is numerically equal to the cos2 of the
angle between the two 1-eigenvectors, onto which they project, or in Hilbert space
the squared modulus of the scalar product, or equivalently the trace of the product of
the two projections.

After a maximally non-redundant question-answer sequence performed by mea-
surement A, the next question might only e.g. ask “is the system in subspace J ?”,
with J of higher dimension—but here there is a definite probability as well, which
can be derived (in accordance with the practical calculation suggested by von Neu-
mann’s Projection Postulate).

3.2 States as States of Information, Relative to the Observer

Suppose that observer O has put a series of questions to system S and has arrived
at the point of attributing |A,x〉 to S, where x is an eigen-value of A. Imagine once
again a second observer P , whose knowledge (gained earlier through a physical trans-
mission process) was enough to attribute an initial state to S + O , and a Hamiltonian
to govern their interaction, enough for him to attribute the evolution in question. Then
as we noted above P has the usual ‘distant’ description of S + O:

initially it is in state
∑

i

βi(|A,ai〉 ⊗ |init〉) (1)

this evolves into the final state
∑

i

βi(|A,ai〉 ⊗ |B,ai〉) (2)



402 Found Phys (2010) 40: 390–417

where B is the ‘pointer observable’ of O—its value being a recorded sequence of 0s
and 1s. Using a reduction, P can attribute a state to S as well, namely

a mixture of states |A,ai〉 with weights β2
i

which is quite different from |A,1〉 or |A,0〉. According to Rovelli, this is all there
is to be said, so far: S has one state relative to O , and another state relative to P .
The phrase ‘S has state |A,1〉 relative to O’ means only that the information O has
obtained can be summed up or represented by the vector |A,1〉. But is the fact that O

has certain information a fact that is or is not observer-relative? We must answer this
question in the light of two points Rovelli insists on:

(i) There is no meaning to the state of a system except within the information of a
further observer.

(ii) There is no way a system P may get information about a system O without
physically interacting with it, and therefore without breaking down (at the time
of the interaction) the unitary evolution description of O .

‘Information’ has a minimal sense in this context, to say that O has information
about S means only that there is a certain correlation in the state of S + O . That
much P was able to predict already, and so he can predict something with certainty
if a measurement will be made to confirm this. Note that what he is able to predict
with certainty amounts to information he already has.

More formally, there is an operator M on the Hilbert space of the S + O system
whose physical interpretation is “Is the pointer correctly correlated to A?” If P mea-
sures M , then the outcome of this measurement would be yes with certainty, when
the state of the S + O system is as in the state described in (2). The operator M is
given by

M(|A,1〉 ⊗ |B,1〉) = |A,1〉 ⊗ |B,1〉
M(|A,1〉 ⊗ |B,0〉) = 0

(3)
M(|A,0〉 ⊗ |B,0〉) = |A,0〉 ⊗ |B,0〉
M(|A,0〉 ⊗ |B,1〉) = 0

where the eigenvalue 1 of M means “yes, the hand of O indicates the correct state
of S” and the eigenvalue 0 means “no, the hand of O does not indicate the correct
state of S”. At time t2, the S + O system is in an eigenstate of M with eigenvalue 1;
therefore P can predict with certainty that O “knows” the value of A.

Thus, it is meaningful to say, according to the P description of the events E, that
O “knows” the quantity A of S, or that O “has measured” the quantity A of S, and
the pointer variable embodies the information (cf. middle of section II-D). But of
course P had a choice, P could have measured a different observable, say K , to try
and find out which result O obtained:

K(|A,1〉 ⊗ |B,1〉) = |A,1〉 ⊗ |B,1〉
K(|A,1〉 ⊗ |B,0〉) = 0
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K(|A,0〉 ⊗ |B,0〉) = 0

K(|A,0〉 ⊗ |B,1〉) = |A,0〉 ⊗ |B,1〉
Intuitively speaking, this is what P would measure to find out what O found. She
would get either result 1 or result 0, and would say “O found 1” or “O found 0”
accordingly. But can we understand that literally as referring to what O had as infor-
mation before P made this measurement? If P finds result 1, does that imply that O

had found 1 and that O had assigned state |A,1〉 to S?
According to Rovelli’s rules, this makes no sense. An interpretation of quantum

measurement as revealing pre-existing values is untenable.
We are now in a position to examine and resolve some puzzles that tend to occur

to practically any reader in first acquaintance with this interpretation.

4 Puzzles Posed and Resolved

All the puzzles will pertain to this basic situation:
O has made a complete measurement on S of two-valued observable A, and has a

record of the question asked (call it ?A) and the answer received; say 1. Accordingly
S has now state |A,1〉 relative to O . The pointer observable on O is B , so on the
old, pre-Rovelli view one takes it that the existence of the record means that B has
value 1. For Rovelli this makes no sense as an observer-independent assertion. To
mention values of the pointer observable at all, we need to look at O from the point
of view of second observer P .

Meanwhile P had made earlier measurements on O + S and so has the informa-
tion throughout that this measurement interaction is taking or has taken place. Based
on his earlier results and his predictions on that basis, O + S has at the end of the in-
teraction an entangled state, namely (β0|B,0〉⊗|A,0〉)+ (β1|B,1〉⊗|A,1〉), relative
to P .

PUZZLE 1. Could O and P Contradict Each Other?

Suppose that P will make a measurement on O + S after this point, and later report
the result to O . In the meanwhile O makes a prediction with certainty about what P

will find. Is it possible that O will find his prediction contradicted by P ?

Example: P will measure (I ⊗A) on O +S. P predicts that he will get value 1
with probability < 1, and value 0 with some probability > 0. Suppose he gets
value 0.
Meanwhile O knows that he has seen value 1, and has a record of that, so as-
signs himself state |B,1〉, and assigns to S the state |A,1〉, and therefore to
O + S the state |B,1〉 ⊗ |A,1〉. So O predicts with certainty that P ’s measure-
ment will have result 1. And so O is making a false prediction here, one that is
falsified by what P finds.

REPLY: The reasoning is questionable in several ways.
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To begin we may note an unwarranted assumption in the second paragraph: that
O has a state relative to itself here. There was no self-measurement in the story. The
relative states are only assigned as summaries of what the real measurement results
have been. So as far as this story goes, O has here no state relative to itself, nor does
O + S have a state relative to O .

Nevertheless, we can leave aside the issue of whether the possibility of self-
measurement could be added to Relational Quantum Mechanics, for there is a much
more important point to be made.10

The more important point is this. It is not to be assumed that P will ever find 0 in
the case in which O has found 1. The insinuation in the above puzzle is that, if this
were so, then P ’s probabilities would be wrong—and since these probabilities come
from quantum mechanics, that such a scenario would contradict quantum mechanics.
But this threat disappears as soon as we take heed of what P ’s probabilities are.
They are what he calculates on a basis that includes no information about what O

found. These probabilities would be tested by placing P very often in a situation that
matches the information he has. P ’s probabilities are for his finding value 1 or value
0 in a situation of that sort—where this sort is not identified in terms of what O finds
during the process, but only in terms derivable from preceding measurements of O

and S that established that an A measurement would take place. We can be sure that
if quantum mechanics is right, and P enters into many such situations, he will find
values 1 and 0 with the correct frequencies.

What we may note in addition (and to this we will return) is that any immediate
attempt to check by measurement whether O’s and P ’s outcomes were the same,
would get a positive result.

PUZZLE 2. But What About ‘Immediate Repetition’ of Measurement?

As von Neumann emphasized, O will predict with certainty that a measurement of
A on S, immediately after his own, will find the same value. So does that not apply
here, to an immediately subsequent measurement by P ?

REPLY: No; in Rovelli’s account the collapse of the wave packet appears only
in the states relative to a given observer. So his echo of von Neumann is that
O will predict with certainty that if he himself, or an observer with exactly the
same interaction history with a system of type W(S), makes an immediate new
measurement of A on S, the same value 1 will appear again.

As Rovelli emphasizes, O can get to know P ’s result only through a relevant inter-
action with P , in effect a measurement by O on P . So O could ask the question:
“what did P see, when he measured A on S after me?”—in the sense that O can
measure P ’s pointer observable afterward, and get some value. As usual, we cannot
assume that the result that O gets is the value that this observable had before O’s
measurement.

10My suggestion is that this should not be added as a possibility; there certainly seems to me to be no
warrant in Rovelli’s interpretation for doing so. For a contrary view and a recent ‘Wigner’s friend’ type
example presented to challenge information-theoretic approaches (specifically Jeffrey Bub’s recent work)
see [8].
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So does this mean that O and P have no way to find out what either of them saw
earlier, as opposed to what it seems now that they have seen? That would still seem
almost as puzzling. To answer this properly, we need to construct our puzzle situation
with more precision and care.

PUZZLE 3. Can an Observer Find out What was Observed Earlier on?

To see how we can get into a confusion here, I am going to present this third version of
the puzzle first of all in the ‘old’ style, assuming that states are observer-independent.
Then the puzzle will again be resolved by seeing how the understanding of this situ-
ation changes on Rovelli’s conception.

Let the measured system S start off in a superposition
∑

β i|A, i〉 of eigenstates of
an observable A corresponding to distinct eigenvalues, and let us measure A twice,
using two measuring systems O and P .11 For simplicity I’ll take A to be time-
independent (we could put in evolution operators, as Groenewold and Rovelli indi-
cate, but it would not seriously affect the argument), and take the pointer observables
of both O and P to be the same observable B .

Then, under the familiar idealized assumptions of a von Neumann measurement, the
combined system S + O will be in dynamic state

∑
βi(|A, i〉 ⊗ |B, i〉) at the end of

the first measurement. At the end of the second measurement the dynamic state of
S + O + P will be, ignoring phase factors,

∑
βi(|A, i〉 ⊗ |B, i〉 ⊗ |B, i〉).

By reduction, we have states also for parts of the total system. Write P [|A, i〉]
for the projection on the ray containing |A, i〉, etc. At the end of the first measure-
ment, the individual systems S and O are in dynamic states [

∑ |βi |2P [|A, i〉] and∑ |βi |2P [|B, i〉], respectively. The final dynamic state of O+P is
∑ |βi |2P [|B, i〉⊗

|B, i〉]. Following von Neumann, assuming collapse, we reason as follows:

As for the individual states, because S and O interact by a measurement inter-
action, S ends up in some |A,k〉, with O in the corresponding |B,k〉. At the
conclusion of the first measurement, the pointer reading observable B on O

11Assume that I and O each evolve freely after their measurement interaction, that there is no interaction
between O and P , and that both A and the ‘pointer-reading observable’ B for O commute with the free
Hamiltonians for S and O respectively.
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thus has the value k as well, we will say that its pointer reads k. Likewise, at
the end of the second measurement, S ends up in some state |A,m〉 with P in
the corresponding |B,m〉; its pointer the reads m. Moreover, m = k.

Suppose we want to check now whether that is so. Then we can have a third mea-
surement, of that ‘agreement observable’ that Rovelli describes, as follows:

Let M be an observable for the combined system O + P , which has eigenvalue 1
on the space spanned by all |B, i〉×|B, i〉, and which has value 0 on all |B, i〉×|B,j〉,
for j not equal to i. Then if O and P are in pure dynamic states |B, i〉 and |B,j〉
respectively (always ignoring phase factors), the value of M will be 1 if and only if
i = j . In the usual interpretation, this means that in the only case in which our pointer
readings can have definite values, M will have the value 1 just in case these values
agree. In the context of that interpretation, then, it is reasonable to speak of M as
the observable which is, or registers, agreement between the two pointer readings.
Even in the context of Rovelli’s interpretation, one can continue to speak of M as the
‘agreement’ observable. The question is whether here, the locution needs to be taken
with a grain of salt—may M take up the value 1 even though the pointer readings do
not agree?

Our present example provides an illustration. The final dynamic state of O + P

is
∑ |βi |2P [|B, i〉 × |B, i〉]. Since all summands of the mixture are eigenstates of

M with eigenvalue 1, so is the state itself. So M takes the value 1 on the system
O +P . To arrive at this conclusion however, we needed only to know the mixed state
here ascribed to O + P —we did not need any information about what states O , P

are in individually. That information is logically compatible with the equally valid
conclusion that O , P are in mixtures of the various states {|B, i〉}. So the conclusion
that M takes value 1 cannot possibly, by itself, guarantee the suggestion that the
pointer reading on P is equal to the pointer reading on O . But if we assume von
Neumann’s rather than Rovelli’s interpretation, we do have that guarantee, since O ,
P collapsed into definite pointer states.

REPLY: Once again, we have drawn a puzzling consequence for Rovelli by think-
ing about the situation in ‘old’ terms, and then having too quick a look at how his
view differs. To really see whether there is a puzzle here, we have to retell the story
from the beginning, in Rovelli’s way. Here is the retelling, which we can now exhibit
as a more elaborate example of Rovelli’s view:

Example 2 Enter third observer, ROV
We describe the situation from the point of view of a third observer, ROV. He

has made measurements on S, O , and P in the past. On this basis he can say that
the initial state of measured system S is a superposition

∑
βi |A, i〉 of eigenstates of

an observable A corresponding to distinct eigenvalues, and that A will be measured
twice, by two observers (measuring systems) O and P .12 The pointer observable on
both O and P is B , with eigenstates {|B, i〉}.

12It is part of ROV’s knowledge, based on past measurements, that I and O each evolve freely after their
measurement interaction, that there is no interaction between O and P , and that both A and the ‘pointer-
reading observable’ B for O commute with the free Hamiltonians for S and O respectively.
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Then, just calculating the time evolution on that basis, the combined system S +O

will be in dynamic state
∑

βi(|A, i〉 ⊗ |B, i〉) relative to ROV at the end of the first
measurement. At the end of the second measurement the dynamic state of S +O +P

relative to ROV will be
∑

βi(|A, i〉 ⊗ |B, i〉 ⊗ |B, i〉).
By reduction, parts of the total system also have states relative to ROV at those

times. As before, write P [|A, i〉] for the projection on the ray containing |A, i〉, etc.
At the end of the first measurement, the individual systems S and O are in states
[
∑ |βi |2P [|A, i〉] and

∑ |βi |2P [|B, i〉] relative to ROV, respectively. At the end of
the second measurement, the final state of O + P relative to ROV, also calculated by
reduction, is

∑ |βi |2P [|B, i〉 ⊗ |B, i〉].

There is no need to carry out a third measurement, of the ‘agreement observable’ M ,
because it is predictable with certainty by ROV that he will get 1 if he does.

But suppose now that ROV asks himself what O and P found, and whether they
found the same thing. Then he is asking a question that has no answer, for he cannot
answer questions about their past given that he made no measurements on the basis
of which he could answer those questions!

Now, of course, ROV can decide to make two new separate measurements on O

and P , to see what they are registering now. So suppose he measures I ⊗B on O +P

and gets value k. At this point he can make a prediction with certainty of what he will
find if he then measures B ⊗ I on this system: for now the state of O + P relative to
ROV is the result of conditionalizing the one he had, on this result. He predicts with
certainty that he will see the same pointer reading |B,k〉 on O .

Was k the value that O and P saw at that earlier time? At this point we have no
basis for thinking that this question can make sense on Rovelli’s view. There are no
states of O , P relative to ROV which could be consulted to answer it.

So, to summarize: with a von Neumann mindset we insist that there must be a fact
of the matter about what O and P saw, tout court, and that a fact of the matter is
always enshrined in a definite quantum state. But in Rovelli’s world that is not the
way things are.

5 Can We Go Beyond the Resolution of These Puzzles?

What we have seen is that the puzzles one might have at first sight of Rovelli’s ac-
count can be resolved. But the resolution leaves one still uneasy, for it hinges on the
point that an observer O can register a measurement outcome—e.g. the answer 1 to
question ?A—but this fact is not equivalent to O being in a particular physical state,
whether relative to itself or relative to any other observer.

In other words there are elements of Rovelli’s ‘meta’ description which may in
particular cases not correspond to any information had by any observer, and hence
apparently not describable in the language of quantum mechanics. One might be
tempted to introduce the fiction that there is a ‘universal observer’ who knows what
information is had (what answers have been registered) by each ‘ordinary’ observer.
But this fiction can certainly not be admitted without ruining the story.
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At the same time, in our reflections on what the observers register as measurement
outcomes, we are targeting the very basis of Rovelli’s understanding of quantum
mechanics, and the very basis of the description of Rovelli’s world:

Quantum mechanics is a theory about the physical description of physical sys-
tems relative to other systems, and this is a complete description of the world.
(Sect. II-C)

Drawing on Rovelli’s favorite illustration of different frames of reference in Ein-
stein’s world, we are clearly tempted to ask: but what relations are there between
the descriptions that different observers give when they observe the same system? Of
course there can be no clue at all to an answer if we assume that there are no interac-
tions at all between these distinct observers. But perhaps we can get a clue if we think
of those distinct observers as themselves subject to observation by a third observer!
Doing so need not be illegitimate if we recall that Rovelli is describing the general
form that any ascription of states or observable-values can take, and that this is the
form of information that an observer could have.

5.1 Rovelli’s Symbolism for the Information Held, Simplified

Let us take a look back at how, in his ‘meta’ description, Rovelli introduces a sym-
bolism to express the fact that a given system ‘has’ information about another one:

If there is a maximal amount of information that can be extracted from the sys-
tem, we may assume that one can select in W(S) an ensemble of N questions
Qi , which we denote as c = {Qi, i = 1,N}, that are independent from each
other. There is nothing canonical in this choice, so there may be many distinct
families c, b, d, . . . of N independent questions in W(S). If a system O asks
the N questions in the family c to a system S, then the answers obtained can be
represented as a string that we denote as

sc = [e1, . . . , eN ]c (4)

The string sc represents the information that O has about S, as a result of the
interaction that allowed it to ask the questions in c. (Section III-C)

The idea of a state of S relative to O enters now, because on the basis of this in-
formation, O can locate S in a finite subspace of the pertinent Hilbert space—even
assign it a particular pure state represented by a vector in that space if the question-
answer sequence was a maximally compatible one. This is what we describe infor-
mally in:

(Form 1) O registers answer 1 to complete question ?A, so S has state |A,1〉
relative to O .

We observe now that there is in effect a time order: the order in which the questions
are asked. (Only order in time will be regarded for now, not time metric.) The N

questions in numbered line (4) appear in the order 1, . . . ,N so we can think of them
as time-points, and can suggestively take them to indicate times t1, . . . , tN . But then
the less formal description of (Form 1) should be expanded to the form:
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(Form 2) O registers answer e1 to complete question ?A(1) at time t1, so S

has state |A(1), e1〉 relative to O at t1, . . . ,O registers answer eN to complete
question ?A(N), so S has state |A(N), eN〉 relative to O at time tN .

Moreover, in general O will calculate evolved states for periods between measure-
ments (compare the formulations by Groenewold where this is made explicit). So I
suggest that we can therefore speak of an evolving relative state, as follows:

(Form 3) S has state |ψ(t)〉 relative to O , during the interval (t1, tN )

or, when we note only certain special moments in that interval, the following is an
acceptable form of description:

(Form 3-FIN) S has states |ψ(1)〉, . . . , |ψ(N)〉 relative to O , at times t1, . . . , tN .

In some contexts it will be convenient to suppress the time reference, and just use
Form 1, but in other contexts we will have to use the full form 3 or 3-FIN.

5.2 Concrete Example Retold as by ROV

As concrete example let us take the situation in Example 2, introduced in Puzzle 3, in
which observers O and P were themselves subject to observation by an outside ob-
server ROV, who started with the same initial information about S+O that P had, but
also information about P , so that he can foresee the sequence of two measurements
that were displayed in the example.

I will now designate the initial time as t0 and the ending times of the two measure-
ment interactions as t1 and t2.

States Relative to ROV

a) The measured system S starts off in a state θ = ∑
βi |A, i〉 relative to ROV, which

is a superposition of eigenstates of an observable A corresponding to distinct
eigenvalues.

b) A will be measured twice, by two measuring systems O and P . Each of O and P

will be in the ‘ready to measure’ state relative to ROV to start, |B, r〉. The indicator
states are |B, i〉 for eigenvalues i of A (which do not include r).

We assume that I and O each evolve freely after their measurement interaction, that
there is no interaction between O and P , and that both A and the ‘pointer-reading
observable’ B for O commute with the free Hamiltonians for S and O respectively.

c) The combined system S +O will be in state
∑

βi(|A, i〉⊗ |B, i〉) relative to ROV
at t1, the end of the first measurement.

d) Similarly at that time, taking into account the as yet unchanging P , the state of
S+O +P relative to ROV will be the superposition

∑
βi(|A, i〉⊗|B, i〉⊗|B, r〉).

e) At t2, the end of the second measurement the state of S + O + P relative to ROV
will be

∑
βi(|A, i〉 ⊗ |B, i〉 ⊗ |B, i〉).
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Further States Relative to ROV

When we look at d) and e) above, we see that the state of S relative to ROV does
not change after t1, because the coefficients in the superposition do not change, even
though the components do.

To show this, note that by reduction, we have states also for parts of the total sys-
tem, namely S, O , P , relative to ROV. As before we write P [|A, i〉] for the projection
on the ray containing |A, i〉, etc. We deduce

f) ROV assigns to S all by itself an evolving mixture ρ(S,ROV)(t) of the states
|ψ(t, i)〉 such that:

for t < t1 the state |ψ(t, i)〉 = θ =
∑

βi |A, i〉,
for t1 ≤ t the state |ψ(t, i)〉 = |A, i〉

This mixture has as components the projections on these evolving vectors, one for
each value i such that the coefficient βi is not zero, and the weights are the ‘squares’
of those coefficients.

Note well, that there is no change in this relative state at the second measurement
time, since in the superposition for the entire system, the values of B in O and P are
the same in each component (that is, for every eigenvalue i such that βi is not zero)
from that moment on. Hence the weights in the mixture do not change from t1 on.

5.3 ROV Observes Five Measurements

In fact, by the definition of von Neumann type measurements—entirely in terms of
the quantum mechanical states and evolution operators (Hamiltonians)—there are
five such measurements in the situation we described just now! The initially given
measurements are:

a measurement of A by O ending at intermediate time t1
a measurement of A by P ending at final time t2

Both of these have pointer observable B , and the criterion they meet, to count as von
Neumann measurements, is that the interaction is such that

(vN Criterion) beginning state |A,k〉 ⊗ |B, r〉 of system S + O evolves into
|A,k〉 ⊗ |B,k〉, where k is any eigenvalue of A; and a fortiori, beginning state
(
∑

βi |A, i〉) ⊗ |B, r〉 evolves into (
∑

βi |A, i〉 ⊗ |B, i〉)
and similarly for P . By the same token, there is also:

a measurement of A by O , also ending at t2

where for simplicity we take A not to be time-dependent (if it is, the same holds, but
the state of S relative to O evolves, in a way that O can calculate, and so adjust with
time passing—no need, for our argument, to cover the general case). So O just keeps
showing a value for A, and assigning the corresponding eigenstate to S, for all times
from t1 on.
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But there is more. From the above it follows that the interaction between S and
the total system O + P is also the correlate of a measurement—in fact of three dis-
tinguishable measurements. For example, if we take B ⊗ I and I ⊗B respectively as
pointer observables on O + P , then the vN criterion is satisfied for times t1 and t2
respectively. So we have:

two measurements of A by O + P , ending at t1 and t2 respectively

To see this, in the story as told in terms of states relative to ROV, let us look at the
overall evolution of the system, relative to ROV.

At the final time t2, the complete system S +O +P is in pure state
∑

βi(|A, i〉⊗
|B, i〉 ⊗ |B, i〉) relative to ROV. By reduction the other states relative to ROV are:

S is in
∑

|βi |2P [|A, i〉]
O and P are both in

∑
|βi |2P [|B, i〉]

S + O and S + P are both in
∑

|βi |2P [|A, i〉 ⊗ |B, i〉]
O + P is in

∑
|βi |2P [|B, i〉 ⊗ |B, i〉]

Inspection shows that the vN Criterion is satisfied for the interactions I mentioned.
But we can add one more: taking B ⊗ B as pointer observable, we also see O + P

engaged in a measurement that ends at the later time t2. That is the fifth measurement
which appears in this story of the states of these various systems relative to ROV, and
their various evolutions.13

The reason it is important to note this is of course that observers gain information
about systems only by measurement, and it is only if they gain information about
systems that those systems have states relative to them. So now we can continue,
in accordance with the meta-description of Rovelli’s world, to see what states S has
relative to O , P , and O + P .

States Relative to O , P , O + P

We can find the states of S relative to O , to P , and to O + P for that interval, except
that there will be some unknowns in it, namely the eigenstates that these observers
assign to S on the basis of the measurements they make on it. (ROV makes no mea-
surements on S, after the interval begins, that is why there are no similar unknowns
in our calculation of ρ(S,ROV ).) So we arrive at:

g) Observer O assigns to S an evolving pure state ρ(S,O)(t):

for t < t1 the state ρ(S,O)(t) = θ =
∑

βi |A, i〉,
for t1 ≤ t the state ρ(S,O)(t) = |A,m〉

13There can be no objection, it seems to me, to allow for trivial limiting cases: if O has absolutely no
interactions with S through which information is gained, it is only a matter of bookkeeping if we say that
then the state of S relative to O is the represented by the Identity operator—the ‘informationless’ statistical
operator. This convention may at times smoothen the presentation, even if it is not really needed.
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and here the value m is an unknown, it is the result that O registers as outcome of the
measurement.

h) For P it is only a little more complicated: P assigns to S a mixture ρ(S,P )(t) of
the evolving pure states λ(t, i) with weights |βi |2:

for t < t1 the state λ(t, i) = θ =
∑

βi |A, i〉,
for t1 ≤ t < t2 the state λ(t, i) = |A, i〉,
for t2 ≤ t the state λ(t, i) = |A,k〉

and here the value k, the outcome of P ’s measurement is unknown.

In the case of O +P we see that it is an observer who makes two measurements, one
precisely at the time of O’s measurement, and one at the time of P ’s measurement,
and finds respectively at that time the values r and s—two unknowns for us, as for
ROV, for we have no basis or law on which to connect the outcomes of measurements
by different observers, no matter how intimately they may be related. But just as did
O , this observer does not assign a mixture, it assigns the pure state

i)

ρ(S,O + P)(t) = the state θ =
∑

βi |A, i〉, for t < t1

= the state |A, r〉, for t1 ≤ t < t2

= the state |A, s〉, for t2 ≤ t

with r and s as the unknowns.
We would like to see what constraints could be added that would ensure concor-

dance between the states of a system S relative to different observers such as O , P ,
and ROV—and here it will be pertinent for us that we have to keep also O + P in
view.

So now, finally, I’m going to propose an addition to Rovelli’s account.

5.4 Additional Postulate Relating Relative States

Additional Postulate. For any systems S, O , P , witnessed by ROV:

• the state of S relative to O (if any) cannot at any time be orthogonal to the state of
S relative to O + P (if any), and

• the state of S relative to P (if any) similarly cannot be orthogonal to the state of S

relative to O + P (if any),
• and the state of S relative to any of these cannot be orthogonal to the state of S

relative to ROV,
• (and so forth for larger composite situations).

Here too the words “if any” are needed for generality; but in our example, the three
systems do assign states to S. We may note again that the case of pure states is very
special, and in general (as opposed in our examples here) the relational states will
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be mixed—and there is no associated ‘ignorance interpretation’ of mixtures. The
requirement of non-orthogonality is rather restrictive for pure states, but of course
always less so for mixtures.

What could be the motivation and intuitive warrant for this postulate, within the
point of view of relational quantum mechanics? As Rovelli presented his own moti-
vation he refers to the example of Einstein’s methodology in the creation of relativity
theory in just the same way that the Copenhagen physicists took their inspiration from
that episode. The inspiration took the form of a certain kind of moderate empiricism:
nothing was to be attributed to how nature itself is or proceeds beyond what is mani-
fested in measurement outcomes. Thus the overriding case for the denial that certain
observables really do have simultaneous sharp values when not measured is precisely
that there is no measurement procedure to reveal that possibility. More precisely, no
configuration of values of observables is to be postulated for unmeasured nature un-
less there is a state in which measurement would show that configuration as outcome,
with certainty.

In the quantum case, where transition probabilities are zero precisely when the
relevant states are orthogonal, we can encapsulate this idea in the

Slogan: Born probability = 0 → NO!

So consider how the situation looks to ROV. When ROV contemplates measurements
on these systems, to see if the pointer observables of O , P , O + P could be in
disagreement with each other at the pertinent times, the calculation of the Born con-
ditional probability for this will be zero. So, to follow the above suggestion as to
how to conceive of the un-measured world, ROV will conceive of the relations be-
tween what the subsystems register accordingly. The idea that any assertion about
what happens in nature must have cash value in what we can expect to detect, mea-
sure, or observe is strong in the Copenhagen tradition, even if contradicted by hidden
variable enthusiasts. It seems to me that it echoes precisely the sort of inspiration that
both the Copenhagen theorists and Rovelli derive from Einstein’s reasoning when he
introduced relativity.

So how is this inspiration honored by our Additional Postulate? If we now look
back to our description of the evolving states of S, through the relevant time interval,
relative to these three observers, we see the following pure state assignments:

ρ(S,O)(t) remains the same from t1 on, namely |A,m〉
ρ(S,P )(t) is a mixture until t2 when it becomes |A,k〉
ρ(S,O + P)(t) is |A, r〉 for times from t1 on, till it becomes |A, s〉 at t2

For different values of m, k, r , s, those vectors are mutually orthogonal, since they
are all eigenvectors of the same operator. So the second and third line immediately
tell us that k = s. But the first and third line tell us that m = r when we attend to t1,
and similarly that m = s, when we attend to t2. So all these numbers are after all the
same.

Result: the evolving states of S relative to the observers O and P are not the
same to begin, but they are the same once P makes its A-measurement on S,
sometime after O did (with no disturbance of A intervening meanwhile).
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Supposing ROV to be knowledgeable of Relational Quantum Mechanics thus ex-
tended, what can he know even though he has made no measurements during or after
that interval, on O and P?

He knows that what they found as outcomes of their measurements were indeed
the same.

He already knew on the basis of Quantum Mechanics alone that if he made a mea-
surement to check on such agreement he would get the answer YES with certainty.
But now, calculating from the same previous measurement results that constitute his
initial information, but using also Additional Postulate, he deduces that the agreement
he would find with certainty if he measured was indeed already there.

This pleasing result, I have to emphasize, is found only by adding this additional
postulate concerning how the information registered by components of a composite
system engaged in several measurements are related to each other. So I cannot pretend
that this harmony between the information obtained by different interacting observers
follows from what Rovelli presented.

But Rovelli did not go into the question of whether there are three-way connec-
tions between information that can be had by observers in such a larger situation.
This additional postulate was phrased so as to add only to the general form in which
information can be had by different systems in a complex situation—without ever
assigning any quantum mechanical states that are observer-independent.

I submit that the addition is consistent with Rovelli’s account, and does not go
essentially beyond what Rovelli allows himself in the ‘meta’ description in which he
couches his depiction of the world of quantum mechanics. For it remains that all that
has been provided—once we recognize the holism in composite situations involving
many interactions—is an answer to “what is the general form of a description of the
world from the vantage points of different observers?”

6 Relational EPR

Laudisa [9] and Smerlak and Rovelli [12] have examined how the Einstein–Podolski–
Rosen situation can be regarded or modeled within Relational Quantum Mechanics.
They do not entirely agree in their approach. Here I shall show how the situation fares
if my Additional Postulate is accepted. The result appears to be different from what
is favored by Rovelli, though it does not seem to affect the empirical content of the
resulting formulation of quantum mechanics.

Let S be a two-part system α + β (such as a photon pair in singlet state), in a
superposition of correlated states ↑ ⊗ ↓ and ↓ ⊗ ↑. The arrows are eigenvalues of
observable A.

Observers P 1 and P 2 respectively measure A⊗ I and I ⊗A with pointer observ-
able B . ROV has information on initial states and dynamic process

P 1 gets ↑ or ↓ . . . the state of α relative to P 1 is |↑〉 or |↓〉
P 2 gets ↑ or ↓ . . . the state of α relative to P 1 is |↑〉 or |↓〉
P 1 + P 2 gets ↑↑ or ↑↓ or ↓↓ or ↓↓ . . . the state of α + β relative to

P 1 + P 2 is |↓〉 ⊗ | ↑〉 or (|↑〉 ⊗ | ↑〉 or (|↓〉 ⊗ | ↓〉 or (|↑〉 ⊗ | ↓〉
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For P 1 + α + P 2 + β ROV assigns at the measurement time a superposition of

(|B,1〉 ⊗ |↑〉) ⊗ |B,2〉 ⊗ |↓〉
and

(|B,2〉 ⊗ x|↓〉) ⊗ (|B,1〉 ⊗ |↑〉)
This implies that ROV assigns to α + β a mixture of (|↑〉 ⊗ |↓〉) and (|↓〉 ⊗ |↑〉).

By the Additional Postulate it follows that the state of α + β relative to P 1 + P 2
must be one of these, thus ruling out two of the possibilities noted above. And then
P 1 + P 2 will assign to α and β separately either |↑〉 and |↓〉 respectively or |↓〉 and
|↑〉 respectively. But then, again by the Postulate, the states of α and β relative to P 1
and to P 2 respectively cannot be the same, on pain of orthogonality to what they are
relative to P 1 + P 2.

Have we arrived at ‘spooky’ non-locality? We need to be worried by possible
conflict with the sentiment so clearly expressed in [12]:

There is no operational definition of observer-independent comparison . . . of
different observers’ information . . .: the information of different observers can
be compared only by a physical exchange of information between the ob-
servers.

Can ROV, in our story (including the Additional Postulate), compare the two states
of α + β relative to P 1 and P 2 before measuring P 1 and P 2 at the end?

YES and NO!

ROV can know that P 1 and P 2 did not register the same value for A. But to know
anything about which values they did register, ROV would have to make measure-
ments. So ROV can predict no more than someone who has not heard the additional
Postulate, but only that if he measured both he would find different registered values,
which is predictable with no reliance on the Additional Postulate.

We can define a function of the outcomes registered by P 1 and P 2, which takes
value 1 if the outcomes are the same and value 0 if they are different. It seems then
that ROV can know the value of this defined quantity, without having measured it.
But the defined quantity has value 1 if and only if the states of α and β relative to
P 1 and P 2 respectively are either |↑〉 and |↓〉, or |↓〉 and |↑〉. That this is so I do not
think follows in the original Relational Quantum Mechanics. Therefore this could be
counted as running contrary to the above cited sentiment.

But I would like to suggest that it may count as a reason for the suggested Addi-
tional Postulate. For otherwise we leave open the possibility that the state of α + β

relative to P 1 +P 2 is (|↑〉⊗ |↓〉, for example, although the states of α and β relative
to P 1 and P 2 respectively are both |↑〉!

Even if we were to insist that “ S has state . . . relative to O” can only have a
truth value related to a further observer ROV (and not be true or false ‘absolutely’)
this same difficulty would appear when ROV is in the picture.14 But there is much to

14The suggestion here would be, it seems to me, a radicalization of the original Relational Quantum
Mechanics, but perhaps closer to the initial intuitions than what I have worked with here. However,
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explore here yet, including the most radical view, namely that even what the states
relative to any observer are must itself be relative to an observer.
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Appendix: An Auxiliary Formalism

Finally, solely as an aid to the imagination, we can add some auxiliary symbolism, as
follows. We note that O registers an answer in an entirely physical way, in that this
measurement involves—and requires—a correlation of the measured observable A

on S with a ‘pointer’ observable B on O . Hence, if we wish to mark that correlation,
we have a final variant on Form 1:

(Form 1-bis) O has [[|B,1〉]]
This looks deceptively like a state attribution to O , which it is not—it is meant as
an equivalent to Form 1, when it is known that O’s pointer observable is B , and no
more. We can think of this as an encoding of the information O has about S in the
spirit of Rovelli’s remark:

Let me then take a lexical move. I will from now on express the fact that q has a
certain value with respect to O by saying: O has the “information” that q = 1.
(Section II-E)

In this passage, q is an observable that pertains to a specific system, the one that
is measured by O , so despite the surface form this is still a relational statement.
A specific example will have a projection on a subspace for q , and a still more specific
example will have this projection operator one-dimensional, in which case to say
‘q = 1’ is the same as ascribing a specific pure state (to the measured system S,
relative to O).

In the October 2006 symposium at the University of Provence, Aix, Carlo Rov-
elli voiced some suspicion of this auxiliary symbolism, so I undertook to restate the
argument without reliance on that device.

Using the auxiliary symbolism, however, we have an equivalent alternative to the
Additional Postulate:

If a composite observer X + Y has [[φ]], while X has [[ξ ]] and Y has [[ξ ′]]
then ξ is possible relative to reduced state # φ and ξ ′ is possible relative to
reduced state φ#.

Written in this way, one can see a formal relationship—though well short of agree-
ment throughout—with the modal interpretation (CVMI) as defended in [14]. There,

though worth exploring further, I see it as difficult to sustain, given its obvious danger of either regress or
circularity—well, perhaps worth exploring precisely because of such danger!
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and in the there cited section of my 1991, it is possible to see just how the last line in
the Additional Postulate (“and so forth for larger composite situations”) would need
to be elaborated in detail.
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